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A two-step solution phase synthesis employing a double UDC (Ugi/Deprotect/Cyclize) strategy has been
utilized to obtain fused 6,7,6,6-quinoxalinone-benzodiazepines and 6,7,7,6-bis-benzodiazepines. Optimi-
zation of the methodology to produce these tetracyclic scaffolds was enabled by microwave irradiation,
incorporation of trifluoroethanol as solvent, and the use of the convertible isocyanide, 4-tert-butyl
cyclohexen-1-yl isocyanide.
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Application of the multi-component reaction (MCR) is a well-
known synthetic strategy in which three or more starting materials
react in a convergent manner to obtain a single highly functionalized
product.1 In drug discovery, MCRs are of interest as an enabling tech-
nology to efficiently probe new dimensions of chemical space in the
production of small molecule libraries that contain high iterative
efficiency potential.2 Of particular note is the Ugi reaction, an isoni-
trile-based MCR in which an amine, carbonyl compound, carboxylic
acid, and isonitrile undergo a condensation reaction to afford the
corresponding functionalized a-acylamino amide.2b,3 UDC (Ugi/de-
protect/cyclize) methodologies employ the Ugi MCR as the initial
diversity generating event and subsequently, strategically posi-
tioned internal masked nucleophiles are deprotected, promoting a
series of ring-closing events.4 This methodology has been utilized
in the production of a plethora of pharmacologically relevant tem-
plates some of which have ultimately led to clinical evaluation.4f,5

In this Letter, we describe a two-step UDC-based methodology to ob-
tain fused 6,7,6,6-quinoxalinone-benzodiazepines 1 and 6,7,7,6-bis-
benzodiazepines 2 Figure 1 that relies on the incorporation of two
masked amine nucleophiles, ethyl glyoxalate as the carbonyl com-
ponent, and the convertible isocyanide, 4-tert-butyl cyclohexen-1-
yl isocyanide. One example of scaffold 1 (R1 = R2 = H) prepared
conventionally in five steps has been previously reported in 1980
by Massa et al. whereas scaffold 2 is completely unreported.6

As indicated in Scheme 1, compound 1 was initially prepared by
a four-component Ugi reaction involving N-Boc-1,2-phenylenedi-
amine 3, ethyl glyoxylate 4, n-butylisonitrile 6, and Boc-2-amino-
benzoic acid 7. However, attempts to form the desired Ugi
product by mixing the four components all at once were unsuc-
cessful and resulted in a significant amount of Passerini product
and un-reacted amine.7 Accordingly, a microwave procedure was
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incorporated to pre-form the Schiff base 5 by reacting N-Boc-1,2-
phenylenediamine 3 with ethyl glyoxylate 4 in DCM at 130 �C for
15 min. Lower temperatures required longer times for the com-
plete disappearance of the starting material and conversion to
Schiff base and they were not compatible with succinct, short
microwave reaction times. The solvent was then evaporated and
the Schiff base, n-butyl isonitrile 6, and Boc-2-aminobenzoic acid
7 were reacted in methanol at room temperature. The Ugi product
8 was successfully obtained albeit in low yield (21%) with the
majority of mass balance accounted for by the highly conjugated
Schiff base starting material (tlc). The Ugi product 8 was further re-
acted in the presence of 10% TFA in DCE under microwave irradia-
tion at 180 �C for 20 min to give the target product 1 in low yield
(37%). The major side product observed was tetracyclic triazadi-
benzoazulenone 9 (27% yield).

This finding suggested that two electrophilic carbonyls (one de-
rived from the carboxylic acid input, the other emanating from the
isonitrile) were competing for the same internal amine. As shown
in Scheme 2, upon removal of the N-Boc-protecting group on the
1,2-phenylenediamine buried in the Ugi scaffold, this amino group
can follow one of two ring-closing routes—nucleophilic displace-
ment of the n-butyl group which was derived from the n-butyl iso-
nitrile (path A) or alternatively, a cyclodehydration reaction with
O O 1 2

Figure 1. Targeted fused tetracyclic quinoxalinone-benzodiazepines 1 and bis-
benzodiazepines 2.
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Scheme 1. Initial synthetic route to scaffold 1.
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Scheme 2. Proposed mechanism of synthesizing benzodiazepines.
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the amide group derived from the acid input in the Ugi reaction
(path B). The other amine derived from the protected anthranilic
acid input, however, exclusively reacts with the electrophilic car-
bonyl from the ester group, which is expected to be rapid.4c In
order to redirect the reaction to proceed solely through path A,
we incorporated the convertible isonitrile, 4-tert-butyl cyclohexen-
1-yl isocyanide 11, in the initial Ugi reaction to increase the electro-
philic nature of the corresponding amide (this occurs via formation
of an activated N-acyliminium species under acidic conditions).
Alternatively, we also hypothesized that introduction of a bulkier
isonitrile such as tert-butyl isonitrile would favor the formation
of the corresponding novel triazadibenzoazulenone 9, another
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Scheme 3. New process of sy
potential route to a new generic library in just two steps. Thus,
subsequently the yield of the Ugi reaction was optimized by the use
of co-solvents trifluoroethanol and dichloroethane. As before, the
Schiff base was formed in DCM via microwave irradiation and then
trifluoroethanol was added (1:1, v/v, trifluoroethanol/DCM) along
with the acid and isonitrile components. When using this alterna-
tive procedure, the Ugi yield increased from 21% to 46%, Scheme 3.
Addition of trifluoroethanol has been shown to produce a similar
increase in the yields for other Ugi reactions.8

With the Ugi product 12 in-hand, cyclization under microwave
irradiation at 180 �C for 20 min afforded compound 1 in good yield
(67%, 31% overall, two steps).9 With satisfactory conditions in
place, a small array of fused 6,7,6,6-quinoxalinone-benzodiazepine
derivatives was thus synthesized with diversity being generated
through the utilization of various benzoic acids and N-Boc dia-
mines to afford the Ugi and final cyclization products with yields
of 45–71% and 67–78%, respectively (Fig. 2). In synthesizing the
small array of molecules, we observed a slight increase in the yield
of the Ugi product when using mono-N-Boc-3,4-dimethylphenyl-
enediamine. This may be attributed to the increased basicity of
the highly conjugated Schiff base derived from this input. Conse-
quently, a methylene linker was inserted to break conjugation of
the Schiff base intermediate by the use of tert-butyl 2-(amino-
methyl)phenylcarbamate 21 as the amine source, Scheme 4. Schiff
base formation was accomplished in just 15 min at room temper-
ature, and addition of acid and isonitrile gave the Ugi product 22
in high yield (82%).
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Figure 3. Structures of fused bis-benzodiazepines (Ugi % yield, cyclization % yield).
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Figure 2. Structures of bicyclic quinoxalinone-benzodiazepines (Ugi % yield, cyclization % yield).
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However, the increased flexibility associated with an additional
methylene linker and increased free energy associated with form-
ing a seven-member ring in lieu of a six-member ring had a nega-
tive effect on the second cyclization to form 2 in lower observed
yields (62%).10 Three additional tetracyclic bis-benzodiazepines
23, 24, and 25 were also synthesized and the yields are shown,
Figure 3.

In summary, two series of tetracyclic quinoxalinone-benzodi-
azepines and novel fused bis-benzodiazepine scaffolds were syn-
thesized in two steps employing a UDC strategy. Ugi reactions
were optimized by addition of trifluoroethanol, and control over
cyclization modes was attained by employing 4-tert-butyl cycloh-
exen-1-yl isocyanide, respectively. Based on the uniqueness of
these scaffolds, the desirable drug-like properties of the molecules
(compound 1, MW = 293, c Log P = 1.19, tPSA = 78.51), and the ease
of synthesis, these scaffolds have the potential to be of interest in
future library enrichment strategies.
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